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Abstract
In this study, the root mean square error values of item parameters’ estimation in a two-dimensional structure condition were examined under different condi-
tions, considering three and five categories with different algorithms (Expe ctati on–Ma ximiz ation , Metropolis–Hastings Robbins–Monro, Quasi-Monte Carlo Expec 
tatio n–Max imiza tion) . The simulation conditions included two different sample sizes (1500 and 3000) in a two-dimensional structure, three test lengths (12, 24, and 
36), three different interdimensional correlations (0.20, 0.50, and 0.80), and two different category numbers (three and five). Analyses were conducted with three 
algorithms and the graded response model from the multidimensional item response theory in 36 different conditions with 100 replications. When the errors were 
examined in terms of the root mean square error, an increase in the number of categories resulted in a partial decrease in most item parameters under the condition 
of 1500 sample size. For researchers conducting analyses in the polytomous multidimensional item response theory, it is recommended to use as large a sample as 
possible, at least 24 items, five categories, and the Quasi-Monte Carlo Expec tatio n–Max imiza tion algorithm.

Keywords: Expectation–Maximization, graded response model, Metropolis–Hastings Robbins–Monro, multidimensional item response theory, Quasi-Monte Carlo 
Expectation–Maximization

Introduction

Important decisions about individual levels, institutional levels, and 
public policies are made based on the results obtained from measurement 
tools (Kolen & Brennan, 2014). In the 21st century, multiple-choice 
tests that score items as either correct or incorrect, that is, 1–0 (binary), 
are not sufficient for measuring higher-order skills such as problem-
solving, critical thinking, and creativity. Therefore, polytomous items 
provide more information, especially in measuring these skills, com-
pared to dichotomously scored items (Donoghue, 1993; Embretson & 
Reise, 2000; Lukhele et al., 1994). Moreover, polytomous items are also 
used for measuring non-cognitive characteristics. Due to the increasing 
preference for performance-based assessment, which is a constructed 
response measurement tool, the effectiveness and informativeness of 
constructed response items in measuring higher-order thinking skills, as 
well as the widespread use of polytomous items in measuring personal-
ity traits and attitudes, the use of item response theory (IRT) models for 
polytomous scored items has become widespread (Embretson & Reise, 
2000; Kim & Cohen, 2002).

Item response theory has various applications in multidimen-
sional structures where the assumption of unidimensionality is vio-
lated (Embretson & Reise, 2000; Hambleton & Swaminathan, 1985; 
Hambleton et al., 1991). The advantages of IRT are demonstrated 
through appropriate model selection (Hambleton & Swaminathan, 

1985). Many studies in the literature have shown that the unidimension-
ality assumption of the obtained data is violated (Lee, 2007). In such 
cases, unidimensional IRT models may be insufficient, and more com-
plex models are needed like multidimensional IRT (MIRT) (Reckase, 
1997).

Measurement tools used in education generally consist of multiple 
homogeneous subtests, where each item contributes to only one dimen-
sion and multiple dimensions are present (Ackerman, 1996). Examples 
of such structures include international studies such as “Programme for 
International Student Assessment” (PISA) and “Trends in International 
Mathematics and Science Study” (TIMSS). For example, in TIMSS, 
multiple cognitive subtests such as numbers, algebra, data, and prob-
ability form a structure, such as mathematics (Bulut, 2013). In cases 
where each subtest is one-dimensional and these subtests form a multi-
dimensional structure, the literature includes between-item (Hartig & 
Höhler, 2009; Wang et al., 2004), simple structured (Ackerman et al., 
2003; Cole & Paek, 2023; Zhang, 2012), or multi-unidimensional (Kuo, 
2015; Kuo & Sheng, 2016; Mun et al., 2019; Sheng, 2005, 2008; Sheng 
& Wikle, 2007, 2008) are called MIRT models. Since these models are 
easier to interpret than complex models, most MIRT models are consid-
ered within the scope of simple structured IRT models (Ackerman et al., 
2003). We used simple structured MIRT models in this research because 
of their widespread use.
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In the literature, there has not been a completely identical study in 
which graded response model (GRM) and parameter estimations are 
done with different algorithms in different simulation conditions in 
simple-structure polytomous data. While MIRT studies are using dif-
ferent algorithms (Cai, 2010; Kuo & Sheng, 2016), it has been observed 
that algorithms in the R programming language (“Exp ectation– 
 Maximi zatio n (EM), Quasi-Monte Carlo Expec tatio n–Max imiza tion 
(QMCEM), and Metropolis–Hastings Robbins–Monro (MHRM)”) are 
not used in these studies. Chalmers (2018) stated that the “MHRM” 
and “QMCEM” algorithms are effective in the case of more than three 
dimensions, but there is no research yet on which algorithm is more 
effective in polytomous items in a two-factor structure.

It has been observed that the studies on MIRT in the literature were 
generally carried out on items scored binary (e.g., Bolt & Lall, 2003; 
Çakıcı Eser & Gelbal, 2015; Chalmers, 2012; Garnier-Villarreal et al., 
2021; Kalkan, 2022; Kose & Demirtasli, 2012; Lee, 2007, 2012; Mun 
et al., 2019; Özer Özkan, 2014; Sahin et al., 2019; Sünbül, 2011). Only 
a few of these studies compared the EM, QMCEM, and MHRM algo-
rithms in two categories of data under various simulation conditions 
(e.g., Kalkan, 2022; Garnier-Villarreal et al., 2021). Kalkan (2022) sug-
gested in his research to use the MHRM algorithm in two-dimensional 
two-category (binary) data. There are also polytomous MIRT studies 
(Cai, 2010; Cole & Paek, 2023; Kuo, 2015; Kuo & Sheng, 2016; Gül, 
2015; Martelli, 2014; Martelli et al., 2016; Jiang et al., 2016). Among 
these studies, Kuo and Sheng (2016) used MIRT estimation algorithms 
(Bock-Aitkin expectation-maximum algorithm (BAEM), adaptive 
quadrature (AQ), Gibbs sampling, Metropolis–Hastings, Gibbs in 
Hastings (Hast ings- withi n-Gib bs), blocked Metropolis, and MHRM) 
in the GRM. They compared using IRTPRO, BMIRT, and MATLAB 
software. They stated that while the algorithms produce similar results 
in the simulation condition where the interdimensional correlation is 
low, the Gibbs algorithm in Hastings produces better results when it is 
medium and high.

When all these studies in the literature are examined, there is no 
similar study in which EM, MHRM, and QMCEM algorithms are com-
pared under different conditions by using polytomous data. It is thought 
that this research will contribute to the literature in terms of providing 
information on which algorithm will make more accurate estimations 
in a two-dimensional structure, three- and five-category data. In addi-
tion, research on how the differentiation of the number of categories in 
polytomous items changes under different conditions and algorithms 
has not been conducted yet.

The accuracy of item parameter estimations was tested under dif-
ferent conditions by using “EM, MHRM, and QMCEM” algorithms 
included in the “mirt” package in the R programming language. The 
algorithms used in the research are briefly explained.

Expec tatio n–Max imiza tion
The EM algorithm is an iterative process involving expectation (E) 

and maximization (M) steps to find the maximum likelihood function 
(Dempster et al., 1977). Since it is necessary to calculate high-dimen-
sional integrals in probability functions in high-dimensional models, 
especially in item parameter estimations, in the EM algorithm, the abil-
ity to generalize is limited. As the number of dimensions increases, 
the number of quadrature points increases considerably. Therefore, this 
algorithm is useless in models with three or four factors (Houts & Cai, 
2016). However, there is a need for research on whether the EM algo-
rithm makes good predictions in two-dimensional models.

Metropolis–Hastings Robbins–Monro
Since the MHRM algorithm performs analyses using Robbins–

Monro type data augmentation developed by Robbins and Monro 
and random assignment together, it is recommended by Cai (2010) 

in high-dimensional models in MIRT analysis. Houts and Cai (2016) 
stated that analyses were performed in three steps with this algorithm. 
Martin-Fernandez and Revuelta (2017) stated that MHRM is a useful 
algorithm in high-dimensional structures that generates maximum like-
lihood and modal or expected a-posteriori point estimation solutions 
for marginal likelihood based on MIRT analyses.

Quasi-Monte Carlo Expec tatio n–Max imiza tion
Although Quasi-Monte Carlo and Monte Carlo are handled in sim-

ilar ways, the QMCEM algorithm is a version of the EM algorithm 
where the E-step is replaced by the Monte Carlo approach (Jank, 
2005). In recent times, QMCEM has found application across diverse 
domains, including mathematical finance. The existing body of litera-
ture highlights the necessity for further exploratory studies employing 
this algorithm to enhance the research, especially in the measurement 
and evaluation in education.

Aim of the Current Research
In this study, it has been discussed how the item parameter estima-

tion will be affected if different algorithms are used in the conditions 
of different sample sizes, correlation, number of categories, and num-
ber of items within the scope of polytomous data. For this purpose, 
answers to the following questions were sought:

What are the root mean square error (RMSE) values of the item 
parameters estimated in the EM algorithm with the GRM in simple 
structured two-dimensional data, three- and five-category measure-
ment tools, in the conditions of different sample sizes (1500 and 3000), 
measurement tool length (12, 24, and 36), and correlation between 
dimensions (0.2, 0.5, and 0.8)?

What are the RMSE values of the item parameters estimated in the 
MHRM algorithm with the GRM in simple structured two-dimensional 
data, three- and five-category measurement tools, in the conditions of 
different sample sizes (1500 and 3000), measurement tool length (12, 
24, and 36), and correlation between dimensions (0.2, 0.5, and 0.8)?

What are the RMSE values of the item parameters estimated in the 
QMCEM algorithm with the GRM in simple structured two-dimen-
sional data, three- and five-category measurement tools, in the con-
ditions of different sample sizes (1500 and 3000), measurement tool 
length (12, 24, and 36), and correlation between dimensions (0.2, 0.5, 
and 0.8)?

How do RMSE values change when different algorithms are used in 
two-dimensional, three- and five-category data? (See Table 1).

Methods

Type of Research
This research has the characteristics of simulation research in terms 

of considering item parameter estimations when analyses are per-
formed with a multidimensional GRM by considering different condi-
tions in polytomous items.

Simulation Conditions
Ethic committee approval is not necessary for this research because 

this is a simulation study. Although the simulation conditions and the 

Table 1. 
Simulation Conditions Employed in This Research

Sample Size Test Length
Correlation Between 

Dimensions
Number of 
Category

1500 12 0.2 3
3000 24 0.5 5

36 0.8
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number of replications differ in the studies in the literature, the studies 
in the literature were used to determine the simulation conditions (see 
Table 1).

Sample Size
In the domain of simulation studies pertaining to IRT, the scope 

of sample size consideration typically ranges from 500 to 5000 par-
ticipants, as evidenced by investigations undertaken by researchers 
such as Bolt & Lall (2003), Cole & Paek (2023), Çakıcı Eser & Gelbal 
(2015), de la Torre & Hong (2010), Guo & Choi (2023), Gül (2015), 
Kuo (2015), Kuo & Sheng (2016), Martelli et al. (2016), Mun et al. 
(2019), Jiang et al. (2016), Yao & Boughton (2007), Yao (2010), Yavuz 
& Hambleton (2017), and Zhang (2012). The specific sample size of 
1500 was adopted in the work of Bulut (2013), wherein it was deemed 
sufficient for MIRT applications. In congruence with these researches, 
the present study pursued simulations employing a sample size ranging 
from 1500 to 3000 participants.

Fixed Number of Dimensions
While the range of dimensions considered in MIRT simulation 

studies spans from two to seven dimensions according to existing 
literature, an observable trend indicates a predominant focus on two 
and three dimensions (Bulut, 2013; Çakıcı Eser & Gelbal, 2015; de 
la Torre, 2008, 2009; de la Torre & Hong, 2010; de la Torre & Patz, 
2005; de la Torre, Song & Hong, 2011; Guo & Choi, 2023; Gül, 2015 
Kalkan, 2022). Within the context of the simulation study, this investi-
gation delved into two-dimensional structures, mirroring the approach 
adopted in Cai’s research (2010). 

Measuring Tool Length (Number of Items)
Within the corpus of existing literature, examination of simulation 

studies reveals a range of item quantities spanning from 10 to 240 (Bolt 
& Lall, 2003; Bulut, 2013; Cole & Paek, 2023; Çakıcı Eser & Gelbal, 
2015; de la Torre, 2008, 2009; de la Torre & Hong, 2010; de la Torre & 
Patz, 2005; de la Torre et al., 2011; Forero & Maydeu-Olivares, 2009; 
Garnier-Villarreal et al., 2021; Guo & Choi, 2023; Kalkan, 2022; Kuo, 
2015; Kuo & Sheng, 2016; Martelli et al., 2016; Mun et al., 2019; Jiang 
et al., 2016; Yao, 2010; Yavuz & Hambleton, 2017). This investigation 
specifically addresses conditions encompassing a minimum of 12 items 
within a three-dimensional framework, with no less than four items 
allocated to each dimension. Furthermore, conditions featuring 24 and 
36 items were incorporated, thereby accounting for the prevalence of 
frequently employed items in measurement scales. 

Correlation Between Dimensions
In the realm of simulation studies, a spectrum of correlation val-

ues ranging from 0 to 0.9 across dimensions has been investigated by 
various scholars (Bolt & Lall, 2003; Bulut, 2013; de la Torre, 2008, 
2009; de la Torre & Hong, 2010; de la Torre & Patz, 2005; de la Torre 
et al., 2011; Guo & Choi, 2023; Gül, 2015; Jiang et al., 2016; Kalkan, 
2022; Koğar, 2014; Kuo, 2015; Kuo & Sheng, 2016; Yao, 2010; Yao & 
Boughton, 2007; Yavuz & Hambleton, 2017). In this study, simulation 
was conducted with three different interdimensional correlation values, 
representing 0.2 for low correlation, 0.5 for medium correlation, and 
0.8 for high correlation, respectively. These values were also used in 
the studies of Kuo (2015) and Kuo and Sheng (2016) with the GRM 
within the scope of MIRT.

Number of Categories
In IRT simulation studies, mostly binary (1–0) data were used (e.g., 

Chalmers, 2012; Garnier-Villarreal et al., 2021; Guo & Choi, 2023; 
Kalkan, 2022; Mun et al., 2019; Sahin et al., 2019). In various inves-
tigations, the researchers generated and analyzed datasets encompass-
ing different numbers of categories. For instance, de la Torre (2008) 
examined datasets involving two, three, and four categories, while 
Martelli et al. (2016) explored datasets comprising three, four, and five 

categories. Additionally, Cai (2010) and Cole & Paek (2023) specifi-
cally investigated datasets consisting of three categories. In this study, 
since the constructed-response cognitive items in large-scale tests such 
as PISA and TIMSS are mostly three-category and five-point grading is 
used more in the scales, the number of categories is considered as three 
and five, and this simulation study has concentrated on category counts 
of three and five.

Number of Replications
In the domain of IRT-focused simulation studies, the number of rep-

lications varies across different investigations. Specifically, the number 
of replications adopted across distinct conditions is reported as follows: 
five replications in the study by Bolt & Lall (2003), 10 replications 
in studies conducted by Choi (1996), Sheng & Wikle (2007; 2008), 
Lee (2012), Kuo (2015), Kuo & Sheng (2016), Martelli (2014), and 
Martelli et al. (2016), 20 replications in research undertaken by Fu 
et al. (2010), Koğar (2014), Sayın & Gelbal (2016), and Sengul Avsar 
& Tavsancil (2017), 25 replications in works conducted by Çakıcı Eser 
& Gelbal (2015), de la Torre & Hong (2010), Gül (2015), and Mun 
et al. (2019), 30 replications in the study by Jiang et al. (2016), and 
notably, studies employing 500 replications, as seen in the research 
by Garnier-Villarreal et al. (2021). Harwell et al. (1996) highlighted 
that a minimum of 25 replications is advisable in IRT-based Markov 
Chain Monte Carlo studies. In alignment with this guidance, the pres-
ent study employed 100 replications, akin to the approach followed in 
the research conducted by Cole and Paek (2023). 

The simulation study is summarized as follows:

Number of conditions: 2 sample sizes (1500, 3000) × 1 dimension (2) × 
3 measurement tool lengths (12, 24, 36) × 3 interdimensional cor-
relations (0.2, 0.5, 0.8) × 2 categories (3.5) = 36 conditions

Used models: Simple structured GRM
Algorithms: EM, MHRM, QMCEM
Number of replications: 100

Verification of Generated Data
To verify the data in the study, data were produced for each condi-

tion, and fit indices, factor loads, correlations between dimensions, and 
multivariate normality (relative multivariate kurtosis) were examined. 
When the fit indices of the models obtained under 36 conditions for the 
simple structured data were examined, it was confirmed that the struc-
ture was provided. All these results confirm that the generated data set 
has been produced with the desired properties.

Generation and Analysis of Data
Although the a parameter is in the range of (−∞,+∞) theoretically, 

it takes values between −2.80 and +2.80 in applications (Baker, 2001). 
Cai (2010) carried out a simulation study by producing data by keeping 
the a parameters in the range of 1.1–2.6 in his simulation study with 
polytomous data. Jiang, Wang, and Weiss (2016) and Bulut and Sünbül 
(2017) produced data with a parameter of a~(1.1, 2.8) from a uniform 
distribution in their simulation studies within the scope of MIRT on 
polytomous data. In this study, data as a~(1.1, 2.8) were produced from 
a uniform distribution of parameter a.

While the parameter b takes values in the range of (−∞,+∞) in 
theory, it usually takes values in the range of (−3,+3) in applications 
(Baker, 2001). De Ayala (1994) stated that parameter b has values in 
the range of [−2,+2]. In other sources, the b parameter usually takes 
values between −2.00 and +2.00, and it is stated that items with a bi 
value close to −2.00 are very easy and items close to +2.00 are very 
difficult (Hambleton et al., 1991; Hambleton & Swaminathan, 1985). 
The initial parameter, denoted as b1, is designated through a random 
sampling process from a uniform distribution to ensure the sequential 
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nature of the b parameter. Specifically, b1 is drawn from the uniform 
distribution U(0.67, 2). Subsequently, the remaining b parameters are 
derived iteratively as follows: b2 = b1 − U(0.67, 1.34), b3 = b2 − U(0.67, 
1.34), b4 = b3 − U(0.67, 1.34), and so forth. This approach takes into 
account the distinctive attributes of GRM within the context of five-
category data. Notably, established references from existing literature 
(Jiang et al., 2016; Bulut & Sünbül, 2017) have been consulted as 
guidelines for formulating the b parameter in this manner.

In the research, the estimation of the ability parameters of multi-
dimensional and categorical simulative data under GRM was made 
under different conditions. R (studio) programming language was used 
in the analysis of the data. In the first stage of the research, the distri-
bution characteristics specified through the “mirt” and “MASS” pack-
ages were taken into account while generating the data. To perform the 
analyses faster, parallel calculations (parallel computing) were made 
using the “doParallel” package and the registerDoParallel( ) command, 
and all cores in the computer were utilized. In the other step, the RMSE 
values of the estimated parameter were calculated. The following for-
mulas were used to calculate the RMSE and bias values used in the 
parameter verification or measurement precision study in the research.

The following formula was used to calculate the RMSE values used 
in the parameter verification or measurement precision study in the 
research.

RMSE
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: Estimated parameter value for item i.

δi is the actual parameter value for item i.

K: number of items

Instead of δ value, for example, in two-dimensional and five-cat-
egory data, calculations are made by replacing the relevant item (a1, 
a2, b1, b2, b3, and b4). The distance to the 0 point is taken into account 
in the interpretation of the RMSE, that is, the accuracy of the estima-
tions increases as it approaches 0. In other words, while smaller values 
closer to zero increase the measurement precision, larger values far 

from zero decrease the measurement precision. In some investigations, 
the RMSE value has been observed to be evaluated in relation to a 
benchmark value of 0.1 (Browne & Cudeck, 1993; DeMars, 2003; Hu 
& Bentler, 1999).

In the last stage, 100 replications were performed with the (for) 
command in a loop.

Results
In this section, the results related to the research problems are 

discussed.

Results Related to the First Sub-Problem
The RMSE values of the item parameters in the EM algorithm for 

two-dimensional simple structured measurement tools are given in 
Table 2.

As shown in Table 2, RMSE values varied between 0.04 and 0.14. 
While the values varied between 0.04 and 0.14 for the a1 parameter 
in three-category data, they varied between 0.04 and 0.08 in five-cat-
egory data. While the values varied between 0.04 and 0.11 for the a2 
parameter in three-category data, they varied between 0.04 and 0.09 in 
five-category data. While the values varied between 0.04 and 0.07 for 
parameter b1 for three-category data, they varied between 0.04 and 0.08 
in data with five categories. In three-category data, the b2 parameter 
ranged from 0.04 to 0.08; it ranged from 0.04 to 0.07 for five-category 
items. In items with five categories, the b3 parameter ranged from 0.04 
to 0.08, and the b4 parameter ranged from 0.05 to 0.10. Increasing the 
number of items and sample size contributes to measurement preci-
sion by causing a decrease in RMSE values. The change in correlation 
values did not cause a pattern in the change of RMSE values. The high-
est RMSE value belonged to parameter a1. In two-dimensional simple 
structured polytomous data, the b parameter had lower RMSE values 
than the a parameter.

In Figure 1, the graph formed by considering the RMSE values of 
the item parameters obtained by the EM algorithm in 1500 and 3000 
samples of two-dimensional, three- and five-category measurement 
tools was given.

Table 2. 
RMSE Values of Item Parameters in EM Algorithm in Two-Dimensional Structure
Conditions Three-Category Data Five-Category Data
Sample 
Size Test Length

Correlation Between 
Dimensions a1 a2 b1 b2 a1 a2 b1 b2 b3 b4

1500 12 0.2 0.14 0.10 0.07 0.08 0.08 0.09 0.07 0.07 0.08 0.09
0.5 0.10 0.10 0.07 0.08 0.07 0.08 0.07 0.07 0.06 0.10
0.8 0.10 0.11 0.06 0.08 0.07 0.07 0.06 0.06 0.06 0.10

24 0.2 0.05 0.10 0.06 0.06 0.07 0.07 0.06 0.05 0.08 0.09
0.5 0.06 0.11 0.05 0.06 0.07 0.07 0.07 0.05 0.07 0.07
0.8 0.07 0.11 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.08

36 0.2 0.05 0.07 0.06 0.06 0.07 0.06 0.08 0.05 0.07 0.08
0.5 0.05 0.07 0.05 0.06 0.07 0.06 0.07 0.05 0.08 0.08
0.8 0.06 0.07 0.06 0.06 0.07 0.05 0.08 0.05 0.07 0.08

3000 12 0.2 0.06 0.07 0.05 0.05 0.07 0.09 0.05 0.06 0.05 0.07
0.5 0.05 0.07 0.04 0.05 0.06 0.07 0.04 0.06 0.05 0.07
0.8 0.04 0.08 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.06

24 0.2 0.06 0.07 0.05 0.06 0.04 0.08 0.05 0.04 0.06 0.07
0.5 0.05 0.06 0.05 0.06 0.05 0.07 0.06 0.05 0.05 0.06
0.8 0.04 0.06 0.05 0.06 0.05 0.06 0.04 0.05 0.06 0.06

36 0.2 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.07
0.5 0.06 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.07
0.8 0.06 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.05

Note: EM = Expec tatio n–Max imiza tion;  RMSE = Root mean square error.
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In Figure 1, it was seen that the increase in the number of categories 
in 1500 samples, except for the a2 and b2 parameters, does not cause 
a decrease in the RMSE values of the item parameters. The change in 
the number of categories in two-dimensional structures was generally 
not effective in the change of the RMSE values of the item parameters 
estimated by the EM algorithm (except for the values of the a2 and b2 
parameters in 1500 samples).

Results Regarding the Second Sub-Problem
The results for the second research question are given later.

The RMSE values of the item parameters in the MHRM algorithm 
for two-dimensional simple structured measurement tools are given in 
Table 3.

As shown in Table 3, RMSE values varied between 0.03 and 0.16. 
While the values varied between 0.04 and 0.16 for the a1 parameter in 

three-category data, they varied between 0.04 and 0.08 in five-category 
data. While the values varied between 0.05 and 0.11 for the a2 parameter 
in three-category data, they varied between 0.03 and 0.09 in five-category 
data. While the values varied between 0.04 and 0.07 for parameter b1 for 
three-category data, they varied between 0.04 and 0.08 in data with five 
categories. In three-category data, the b2 parameter ranged from 0.04 to 
0.09; it ranged from 0.04 to 0.08 for five-category items. In items with 
five categories, the b3 parameter ranged from 0.05 to 0.09, and the b4 
parameter ranged from 0.06 to 0.12. Increasing the number of items and 
sample size contributed to measurement precision by causing a decrease 
in RMSE values. The change in correlation values did not cause a pat-
tern in the change of RMSE values. The highest RMSE value belonged 
to parameter a1. In two-dimensional simple structured polytomous data, 
the b parameter had lower RMSE values than the a parameter.

In Figure 2, the graph formed by considering the RMSE values of 
the item parameters obtained by the MHRM algorithm in 1500 and 

Figure 1. 
Analysis of RMSE Values of Item Parameters Estimated by EM Algorithm of Two-Dimensional, Three- (Left) and Five-Category (Right) 
Measurement Tools by Number of Categories. EM = Expec tatio n–Max imiza tion,  RMSE = Root mean square error.

Table 3. 
RMSE Values of Item Parameters in MHRM Algorithm in Two-Dimensional Structure
Conditions Three-Category Data Five-Category Data
Sample 
Size Test Length

Correlation Between 
Dimensions a1 a2 b1 b2 a1 a2 b1 b2 b3 b4

1500 12 0.2 0.16 0.10 0.07 0.09 0.08 0.09 0.07 0.08 0.08 0.10
0.5 0.11 0.10 0.07 0.08 0.06 0.09 0.07 0.07 0.06 0.11
0.8 0.10 0.10 0.07 0.08 0.07 0.06 0.06 0.07 0.06 0.12

24 0.2 0.05 0.10 0.06 0.06 0.07 0.07 0.07 0.06 0.08 0.09
0.5 0.06 0.11 0.05 0.06 0.06 0.07 0.07 0.05 0.07 0.07
0.8 0.07 0.11 0.06 0.07 0.07 0.07 0.08 0.07 0.08 0.09

36 0.2 0.05 0.07 0.06 0.06 0.07 0.06 0.08 0.05 0.09 0.08
0.5 0.05 0.06 0.05 0.06 0.07 0.06 0.07 0.04 0.08 0.07
0.8 0.05 0.07 0.07 0.06 0.07 0.05 0.08 0.06 0.09 0.08

3000 12 0.2 0.06 0.08 0.04 0.05 0.06 0.09 0.05 0.07 0.06 0.07
0.5 0.05 0.08 0.04 0.05 0.06 0.07 0.04 0.06 0.06 0.07
0.8 0.04 0.07 0.04 0.04 0.05 0.06 0.05 0.04 0.05 0.06

24 0.2 0.07 0.08 0.05 0.07 0.05 0.07 0.05 0.05 0.06 0.08
0.5 0.05 0.06 0.04 0.06 0.05 0.07 0.06 0.05 0.06 0.06
0.8 0.04 0.07 0.05 0.06 0.06 0.05 0.05 0.05 0.06 0.06

36 0.2 0.05 0.05 0.06 0.05 0.05 0.03 0.05 0.05 0.06 0.07
0.5 0.06 0.05 0.05 0.04 0.04 0.04 0.06 0.05 0.05 0.07
0.8 0.06 0.07 0.05 0.05 0.04 0.06 0.06 0.05 0.05 0.07

Note: MHRM = Metropolis–Hastings Robbins–Monro; RMSE = Root mean square error.
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3000 samples of two-dimensional, three- and five-category measure-
ment tools was given.

In Figure 2, it was seen that the increase in the number of categories 
under conditions other than the a2 parameter of 1500 samples did not 
cause a decrease in the RMSE values of the item parameters. In two-
dimensional structures, the change in the number of categories was 
generally not effective in the change of the RMSE values of the item 
parameters estimated by the MHRM algorithm (except for the values 
of 1500 sample a2 parameters).

Results Regarding the Third Sub-Problem
The results for the third research question are given later.Table 4 

provides the RMSE values of the item parameters within the frame-
work of the QMCEM algorithm applied to two-dimensional simple 
structured data.

As shown in Table 4, RMSE values varied between 0.04 and 0.14. 
While the values varied between 0.04 and 0.14 for the a1 parameter 

in three-category data, they varied between 0.04 and 0.08 in five-cat-
egory data. While the values varied between 0.04 and 0.11 for the a2 
parameter in three-category data, they varied between 0.04 and 0.10 in 
five-category data. While the values varied between 0.04 and 0.07 for 
parameter b1 for three-category data, they varied between 0.04 and 0.08 
in data with five categories. In three-category data, the b2 parameter 
ranged from 0.04 to 0.08; it ranged from 0.04 to 0.07 for five-category 
items. In items with five categories, the b3 parameter ranged from 0.05 
to 0.08, and the b4 parameter ranged from 0.05 to 0.11. Increasing the 
number of items and sample size contributed to measurement preci-
sion by causing a decrease in RMSE values. The change in correlation 
values did not cause a pattern in the change of RMSE values. The high-
est RMSE value belonged to parameter a1. In two-dimensional simple 
structured polytomous data, the b parameter had lower RMSE values 
than the a parameter.

The graph formed by considering the RMSE values of the item 
parameters obtained by the QMCEM algorithm in 1500 and 3000 

Figure 2. 
Analysis of the RMSE Values of the Item Parameters Estimated by the MHRM Algorithm of Two-Dimensional, Three- and Five-Category 
Measurement Tools by Category Number. MHRM = Metropolis–Hastings Robbins–Monro; RMSE = Root mean square error.

Table 4. 
RMSE Values of Item Parameters in QMCEM Algorithm in Two-Dimensional Structure
Conditions Three-Category Data Five-Category Data
Sample 
Size Test Length

Correlation Between 
Dimensions a1 a2 b1 b2 a1 a2 b1 b2 b3 b4

1500 12 0.2 0.14 0.10 0.07 0.08 0.08 0.10 0.07 0.07 0.08 0.09
0.5 0.10 0.10 0.07 0.08 0.07 0.09 0.07 0.07 0.06 0.10
0.8 0.10 0.10 0.06 0.08 0.07 0.07 0.06 0.06 0.06 0.11

24 0.2 0.05 0.10 0.06 0.06 0.07 0.07 0.06 0.05 0.08 0.09
0.5 0.06 0.11 0.05 0.06 0.07 0.08 0.07 0.05 0.07 0.07
0.8 0.07 0.11 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.08

36 0.2 0.05 0.07 0.06 0.06 0.07 0.06 0.08 0.05 0.07 0.08
0.5 0.05 0.07 0.05 0.06 0.07 0.06 0.07 0.04 0.07 0.08
0.8 0.06 0.07 0.06 0.06 0.07 0.05 0.08 0.05 0.08 0.08

3000 12 0.2 0.06 0.08 0.05 0.05 0.07 0.09 0.05 0.06 0.05 0.07
0.5 0.05 0.07 0.04 0.05 0.06 0.07 0.04 0.06 0.05 0.07
0.8 0.04 0.08 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.06

24 0.2 0.06 0.07 0.05 0.06 0.04 0.08 0.05 0.04 0.06 0.07
0.5 0.05 0.06 0.05 0.06 0.05 0.07 0.06 0.05 0.05 0.06
0.8 0.04 0.07 0.05 0.05 0.05 0.06 0.04 0.05 0.05 0.06

36 0.2 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.07
0.5 0.06 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.07
0.8 0.06 0.06 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05

Note: RMSE = Root mean square error; QMCEM = Quasi-Monte Carlo Expec tatio n–Max imiza tion. 



Büyükkidik and Atar. Investigating Item Parameter Estimation Accuracy in Multidimensional Polytomous Data Under Various Conditions

227

samples of two-dimensional, three- and five-category measurement 
tools is given in Figure 3.

As shown in Figure 3, it was seen that the increase in the number 
of categories in 1500 samples, except for the a2 and b2 parameters, did 
not cause a decrease in the RMSE values of the item parameters. The 
change in the number of categories in two-dimensional structures was 
generally not effective in the change of the RMSE values of the item 
parameters estimated by the QMCEM algorithm (except for the values 
of the a2 and b2 parameters in 1500 samples).

Results Regarding the Fourth Sub-Problem
Whether the RMSE values of two-dimensional, three- and five-

category measurement tools changed when different algorithms were 
used was discussed in this research problem. In Figure 4, the graph 
of the RMSE values of the item parameters estimated from the EM, 
MHRM, QMCEM algorithms, and the two-dimensional, three- and 
five-category multidimensional GRM data sets is given.

RMSE values in two-dimensional, three- and five-category mea-
surement tools were similar when different algorithms were used.

Discussion and Conclusion and Recommendations

In this study, it was aimed to examine how the RMSE values of 
item parameter estimations differ under different algorithms under 
different simulation conditions in simple structured multidimensional 
data with three and five categories. For this purpose, the change in the 
number of categories in the two-dimensional structure in EM, MHRM, 
and QMCEM algorithms with different sample sizes (1500 and 3000), 
measurement tool length (12, 24, and 36), and correlation between 
dimensions (0.2, 0.5, and 0.8) was examined to determine what kind of 
differences it caused in the RMSE values in the item parameter estima-
tions under the conditions.

Generally, augmenting the sample size within the context of a two-
dimensional structure led to a convergence of RMSE values toward 
zero, thereby enhancing the precision of measurement estimations. A 
comprehensive review of pertinent literature regarding the impact of 
sample size conditions on parameter estimations (Bolt & Lall, 2003; 
Cole & Paek, 2023; Çakıcı Eser & Gelbal, 2015; de la Torre & Patz, 
2005; de la Torre & Hong, 2010; Gül, 2015; Jiang, Wang & Weiss, 
2016; Kuo, 2015, Kuo & Sheng, 2016; Lee, 2012; Martelli et al., 

Figure 3. 
Analysis of the RMSE Values of the Item Parameters Estimated by the QMCEM Algorithm of Two-Dimensional Measurement Tools According to 
the Number of Categories. RMSE = Root mean square error; QMCEM = Quasi-Monte Carlo Expec tatio n–Max imiza tion. 

Figure 4. 
RMSE Values for Item Parameters Estimated from EM, MHRM, QMCEM Algorithms in Two-Dimensional, Three- and Five-Category MGRM 
Datasets. EM = Expec tatio n–Max imiza tion;  MGRM = Multidimensional grade response model; MHRM = Metropolis–Hastings Robbins–Monro; 
RMSE = Root mean square error; QMCEM = Quasi-Monte Carlo Expec tatio n–Max imiza tion.  



HAYEF: JOURNAL of EDUCATION

228

2016; Sheng & Wikle, 2007; Sünbül, 2011; Yao & Boughton, 2007; 
Yao, 2010; Yavuz & Hambleton, 2017; Zhang, 2012), highlighted a 
consistent result: as the sample size increases, the RMSE values tend 
to diminish (Bolt & Lall, 2003; Cole & Paek, 2023; Çakıcı Eser & 
Gelbal, 2015; DeMars, 2003; de la Torre & Patz, 2005; Gül, 2015; 
Kuo, 2015; Lee, 2012; Reise & Yu, 1990; Şahin, 2012; Sheng & Wikle, 
2007; Sünbül, 2011; Zhang, 2012). The outcomes of this research align 
with the existing literature and underlined the congruence of findings 
in this regard.

In addition, Bulut (2013) stated that the sample size of 1500 is suf-
ficient for the parameter validation studies of the MIRT. The RMSE 
values above 0.10 are considered an indicator of poor fit (Hu & Bentler, 
1999). In this study, RMSE values with poor fit were encountered 
mostly in the conditions of 1500 samples and a low number of items.

Increasing the number of items according to the three algorithms 
used (EM, MHRM, and QMCEM) led to a decrease in the RMSE val-
ues of the item parameter estimations. When similar studies in the liter-
ature were examined, it was seen that similar results were reached (Bolt 
& Lall, 2003; Çakıcı Eser & Gelbal, 2015; Yavuz & Hambleton, 2017). 
Çakıcı Eser and Gelbal (2015) also suggested using measurement tools 
with at least 12 items for two-dimensional simple structured data.

One of the simulation conditions in this research was to differentiate 
the correlation between dimensions. In this study, the differentiation 
of the correlation between dimensions did not cause a pattern in the 
RMSE values of the item parameter estimations. When similar studies 
in the literature were examined, it was seen that the variation of corre-
lation values between dimensions had a different effect from condition 
to condition (e.g., Ansley & Forsyth, 1985; Bolt & Lall, 2003; Yavuz & 
Hambleton, 2017; Gül, 2015; Kuo, 2015). These results were consis-
tent with the results of our research.

It was found that EM, MHRM, and QMCEM algorithms performed 
similarly in testing the accuracy of item parameter estimations in a two-
factor structure. Cai (2010) found similar item parameter estimation 
accuracy when using the EM and MH-RM algorithms in two-dimen-
sional polytomous datasets. Garnier-Villarreal, Merkle, and Magnus 
(2021) stated in their simulation studies that the EM algorithm works 
well in a low-factor structure like two, and the MHRM algorithm can 
be preferred if there are more than four factors. Considering the simula-
tion times in this research, it can be suggested to use the QMCEM algo-
rithm in a two-factor structure for time-saving and good estimations.

Finally, it was found that increasing the number of categories did not 
cause serious differences, except that several item parameters in differ-
ent algorithms decreased the RMSE values. However, if researchers 
who will work with polytomous multidimensional data want to obtain 
better estimations for each item parameter, it is recommended to work 
with five-category data. In the literature, there is a need for studies 
that reveal the effect of the number of categories on the measurement 
precision under MIRT under different conditions. Future research may 
focus on this issue.

These studies had several limitations. First, this study focused on 
simple structured two-dimensional polytomous data. Real and simu-
lation research can be performed on data with a different number of 
dimensions. Instead of simple structured MIRT models, complex 
structured MIRT models can be considered. The second limitation 
concerned simulation conditions. Similar studies can be conducted by 
considering different sample sizes, correlations between dimensions, 
and the number of categories. The third limitation was related to the 
algorithms and programming language used. Research can be carried 
out using different software and algorithms. The fourth limitation was 
related to the polytomous MIRT model used. Instead of the GRM, a 

study can be conducted in which different MIRT models (partial credit 
model, generalized partial credit model, etc.) are compared. In this 
study, RMSE values were focused; other studies may include values 
such as bias.
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